
SCALABLE WEB
PROGRAMMING

CS193S - Jan Jannink - 2/02/10

Weekly Syllabus
1.Scalability: (Jan.)

2.Agile Practices

3.Ecology/Mashups

4.Browser/Client

5.Data/Server: (Feb.)

6.Security/Privacy

7.Analytics*

8.Cloud/Map-Reduce

9.Publish APIs: (Mar.)*

10. Future

* assignment due

Data is the Core

Maybe I should just go back and rename the course

Data Storage, Access, Transport, Presentation

keep it generic

design for incremental system growth

avoid unbounded growth at any layer

duplicate elimination, query filtering

Data Storage

Reliable Persistence

almost every other DB feature is overkill in web apps

Simplicity/Genericity

avoid a system that grows more complex over time

Recoverability

Backups are great but not the first line of defense

Data Scalability

Data access spreading

Balance reads to writes

Data set partitioning

Parallel Access

Hot Spots

Data Caching, Randomizing Keys

Database Scalability

Keep schemas ultra generic

consider storing all data in a single table

Constraint management often works against availability

increases the number of query errors

Caching is key

commonly accessed data accounts for majority of requests

Flat File to Data Center

Single table, single server

Distributed in memory cache

Master - Slave single master

Table partitioning, multiple masters

Read partitioning, multiple locations

Attribute Data Store

Basic data tuples

(ID, Content)

equivalent to a hashtable

(ID1, ID2, Content)

complete for representation of semi structured data

similar to RDF data model

Attribute Graph Model

ID #1
attr 1
attr 2

ID #2
attr 1
attr 3

Link ID #2

ID #1 Value
Attribute ID

Attribute Model Benefits

Trivial to manage objects

Easy to repair broken constraints

Trivial to partition tables

Natural to support huge data graphs

Automatically support every new feature

future proof

Drawbacks

Schema does not guide query style

Semantics buried in object and attribute definitions

Need to encode these semantics in the server code

Some advance planning needed for data path design

Agile Data

Read/write ratio is near 10/1

80-20 access pattern

20% of data accounts for 80% of access

Construct pages from no more than 2 DB queries

reassess page or data design otherwise

Future proof your design by not locking into a complex schema

Agile App Design

Make the data path the core of the system

Design data access API to allow different backends

ease transition to different clouds

Centralize access methods into a few classes at most

simplify addition of an in memory cache

Rapid Prototyping vs. Scale

Most sites are built front to back, UI first, back end last

pressure to demo by investors

we know better what we can see in front of us

Ruby on Rail ‘magically’ generates DB schemas

gets apps out the door fast

difficult to start from data centered design

Extreme Programming
Conundrum

Main Principle: don’t design more than immediate needs

Main Caveat: don’t make the same mistake twice

Main Compromise

don’t build more than what you need

learn how to design minimalist systems that don’t dead end

Twitter Example

Basic idea: put IM status on the web

extreme case of long tail data access

Largest Ruby on Rails system

scheduled downtime

limited feature growth

data access APIs are all throttled

Agile Cache Design

Store objects either as raw DB rows or as server objects (or both)

use ID as key

optimize for access pattern

read only => DB rows, frequent updates => server objects

Store entire query results too

use query string or hash as key

Agile Parallelization

Worth starting at the Webserver level

round robin routing is usually sufficient

lock users to a given server

associate closely linked content to closer web servers

extend CDN (Content Delivery Network) concept

Master Slave DB Concepts

Start with one DB server

about 10 reads per write

Add extra DBs

writes copied by log file

End with 10 identical DBs

1 read per write at full load

New Frontier: Autopartition

Route queries to DB servers by key

When Server reaches access or query speed threshold

Bring up standby DB servers

Copy tables

Split DB key space evenly

Update DB client routing table

Worth Checking Out

Memcached

http://memcached.org/

MySQL replication

http://dev.mysql.com/doc/refman/5.5/en/replication.html

RDF

http://www.w3.org/TR/rdf-concepts/

http://gears.google.com
http://gears.google.com
http://gears.google.com
http://gears.google.com
http://gears.google.com
http://gears.google.com

Q & A Topics

Data Loss, Downtime, Backups

Index and query optimizing

when to do it

Other architectures

document oriented DBs

column oriented DBs

