SCALABLE WEB
PROGRAMMING

CS193S - Jan Jannink - 2/02/10

&

Weekly Syllabus

1.Scalability: (Jan.)
2. Agile Practices

3.Ecology/Mashups
4. Browser/Client

5.Data/Server: (Feb.)

6.Security/Privacy

(. Analytics™

8.Cloud/Map-Reduce

9.Publish APIs: (Mar.)*

10. Future

* assignment due

Datais the Core

“t Maybe | should just go back and rename the course
“& Data Storage, Access, Transport, Presentation

*k keep 1t generic

& design for incremental system growth

“¢ avoid unbounded growth at any layer

*¢ duplicate elimination, query filtering

Data Storage

“t Reliable Persistence

“& almost every other DB feature is overkill in web apps
*& Simplicity/ Genericity

“k avoid a system that grows more complex over time
“ Recoverability

* Backups are great but not the first line of defense

Data Scalability

“ Data access spreading

* Balance reads to writes
“¢ Data set partitioning

*¢ Parallel Access
= Hot Spots

*t Data Caching, Randomizing Keys

Database Scalability

“t Keep schemas ultra generic
“& consider storing all data in a single table

“t Constraint management often works against availability
“¢ increases the number of query errors

“ Caching 1s key

*k commonly accessed data accounts for majority of requests

Flat File to Data Center

*& Single table, single server

*¢ Distributed in memory cache

“k Master - Slave single master

*k Table partitioning, multiple masters

“¢ Read partiioning, multple locations

Attribute Data Store

*¢ Basic data tuples
** (ID, Content)
*& equivalent to a hashtable
* (ID1, ID2 , Content)
*& complete for representation of semi structured data

= similar to RDF data model

Attribute Graph Model

Attribute ID
—_—

Link ID #2
————

Attribute Model Benefits

*¢ Trivial to manage objects

“¢ Kasy to repair broken constraints

*¢ I'rivial to partition tables

“ Natural to support huge data gfaphs

“t Automatically support every new feature

*¢ future proof

Drawbacks

“t Schema does not guide query style
“& Semantics buried in object and attribute definitions
“ Need to encode these semantics in the server code

“¢ Some advance planning needed for data path design

Agile Data

*¢ Read/write ratio is near 10/1

= 80-20 access pattern
= 20% of data accounts for 30% of access

“ Construct pages from no more‘ than 2 DB queries
“k reassess page or data design otherwise

*¢ Future proofyour design by not locking into a complex schema

Agile App Design

“t Make the data path the core of the system

*+ Design data access API to allow different backends
“k ease transition to different clouds

“k Centralize access methods into a few classes at most

“& simplify addition of an in memory cache

&

Rapid Prototyping vs. Scale

2 Most sites are built front to back, Ul first, back end last
*k pressure to demo by investors
* we know better what we can see in front of us

¢ Ruby on Rail ‘magically’ generétes DB schemas
“k gets apps out the door fast

= ditficult to start from data centered design

@

Extreme Programming
Conundrum

“t Main Principle: don’t design more than immediate needs
: Main Caveat: don’t make the same mistake twice
& Main Compromise

“¢ don’t build more than what you need

“& learn how to design minimalist systems thatdon’tdead end

Twitter Example

*¢ Basic idea: put IM status on the web

*k extreme case of long tail data access
*¢ Largest Ruby on Rails system

K scheduléd downtime ‘

*¢ limited feature growth

% data access APls are all throttled

Agile Cache Design

*k Store objects either as raw DB rows or as server objects (or both)
¢ use ID as key
*k optimize for access pattern
“¢ read only => DB rows, frequent updates => server objects

“k Store entire query results too

“k use query string or hash as key

Agile Parallelization

*t Worth starting at the Webserver level
*# round robin routing is usually sufficient
“¢ lock users to a given server
“k associate closely linked content to closer web servers

“¢ extend CDN (Content Delivery Network) concept

Master Slave DB Concepts

“& Start with one DB server
“& about 10 reads per write | |

*t Add extra DBs / \
“& writes copied by log file -

** End with 10 identical DBs

*¢ 1 read per write at full load

&

New Frontier: Autoparation

“t Route queries to DB servers by key
& When Server reaches access or query speed threshold
* Bring up standby DB servers

*k Copy tables ‘

“& Split DB key space evenly

& Update DB client routing table

@

Worth Checking Out

** Memcached

Sl & A c e el e ey 4

& MySQL replication

A T R S e e i SO e S O e Ol e S TN N Bl B Ie e e @ et L O i au

** RDF

Nt s o R rd S cencepit sy

http://gears.google.com
http://gears.google.com
http://gears.google.com
http://gears.google.com
http://gears.google.com
http://gears.google.com

Q) & A'Topics

* Data Loss, Downtime, Backups
“¢ Index and query optimizing

** whentodo it
* Other afchitectures

*¢ document oriented DBs

sk column oriented DBs

